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ABSTRACT

Graph Neural Differential Equations (GNDEs) extend Graph Neural Networks
(GNNs) to a continuous-depth framework, providing a robust tool for modeling
complex network dynamics. In this paper, we investigate the potential of GN-
DEs for transferring knowledge across different graphs with shared convolutional
structures. To bridge the gap between discrete and continuous graph representa-
tions, we introduce Graphon Neural Differential Equations (Graphon-NDEs) as
the continuous limit of GNDEs. Using tools from dynamical system theories and
graph limit theory, we rigorously establish this continuum limit and develop a
mathematical framework to quantify the approximation error between a GNDE
and its corresponding Graphon-NDE, which decreases as the number of nodes in-
creases, ensuring reliable transferability. We further derive specific rates for var-
ious graph families, providing practical insights into the performance of GNDEs.
These findings extend recent results on GNNs to the continuous-depth setting and
reveal a fundamental trade-off between discriminability and transferability in GN-
DEs and are supported by our numerical examples.

1 INTRODUCTION

Graph Neural Differential Equations (GNDEs) represent an innovative extension of Graph Neu-
ral Networks (GNNs), where the forward pass is formulated as the solution of an ordi-
nary differential equation (ODE), with the derivative function parameterized by a GNN. In-
troduced by Poli et al. (2019), this framework generalizes Neural ODEs Chen et al. (2018)
to the graph domain, enhancing sample efficiency and generalization performance on net-
worked data compared to traditional discrete GNNs. GNDEs and their variants are par-
ticularly effective in modeling continuous-time phenomena in networked dynamical systems
and often outperform conventional deep learning models that do not explicitly account for
graph structures Poli et al. (2019); Choi et al. (2022); Xu et al. (2023); Chen et al. (2024).
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Theorem A.13. Suppose that AS2 and AS4 hold. Let W : I ⇥ I ! {0, 1} be a graphon of simple
graphs with b := dimB(@W+) 2 [1, 2), and G = [Gf : f 2 NF ] with Gf , f 2 NF being step
functions. Let Wn and Gn be defined by ?? and ?? with ??. Let X and Xn denote the vector-
valued functions corresponding to the solutions of 6 and 12. Let P and Q be constants defined in
equation 45 with p = 2. Then for any ✏ > 0, there exists a positive integer NW,G depending on W
and G such that when n > NW,G, it holds that

kX(T ) � Xn(T )kL2(I;RF )  P
1

n1� b+✏
2

+ QCG
1p
n

, (62)

where CG is a constant only depending on G.

Proof. We begin with estimating kW � WnkL2(I⇥I). Recall that N�(@W+) denotes the number of
�-mesh cubes that intersect @W+. We set � = 1/n, and it follows from definition of Wn that

kW � Wnk2
L2(I⇥I) =

Z

I

|W (u, v) � Wn(u, v)|2dudv  N1/n(@W+)
1

n2
. (63)

According to definition 61 of upper box-counting dimension, for any ✏ > 0, there exists NW 2 N
such that when n > NW , log N1/n(@W+)

� log(1/n) < b+✏. Therefore, N1/n(@W+)  nb+✏ which combining
with 63 yields

kW � WnkL2(I⇥I)  n�(1� b+✏
2 ). (64)

We proceed to estimate kG � GnkL2(I;RF ). Note that

kG � Gnk2
L2(I;RF ) =

X

f2NF

kGf � (Gn)fk2
L2(I) (65)

It follows from Lemma ?? that for each f 2 NF , there exists NGf
2 N such that when n > NGf

,
there holds

kGf � (Gn)fkL2(I)  CGf

1p
n

(66)

where CGf
is a constant only depending on Gf . By letting CG :=

⇣P
f2NF

C2
Gf

⌘1/2

, when
n > NG := max{NGf

: f 2 NF }, we obtain from 65 and 66 that

kG � GnkL2(I;RF )  CG
1p
n

. (67)

We set NW,G := max{NW , NG}. Then when n > NW,G, we plug the estimates 64 and 67 into 49
and get the desired result 62.

[Ẋn(s)]i = [�(Sn; Xn(s), H(s))]i (68)

24

Figure 1: Vector fields generated by the
GNDE model over cyclic kNN (k=4)
graphs with N = 10, 20, 40 nodes.

Similar to Neural ODEs, GNDEs can be trained us-
ing standard backpropagation and the adjoint sensitivity
method, which offers memory efficiency. However, train-
ing GNDEs on large, dense graphs remains a challenging
problem. In GNNs, graph convolutions employ shared
coefficients across nodes, allowing generalization across
different graphs. GNDEs share this capability, prompt-
ing an important question: Can GNDEs trained on mod-
erately sized graphs be transferred to larger, structurally
similar graphs while preserving high prediction accuracy?

In discrete settings, the transferability of Graph Neural
Networks (GNNs) across graphs of varying sizes has gar-
nered significant attention. Recent advances have intro-
duced Graphon Neural Networks (Graphon-NNs) as limit
objects of GNNs, establishing theoretical bounds on the
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approximation error between GNNs and their corresponding Graphon-NNs. These results reveal
a fundamental trade-off between discriminability and transferability. However, directly extending
these bounds to Graph Neural Differential Equations (GNDEs) is challenging. While GNDEs can
be viewed as continuous-depth limits of GNNs, the process of taking such limits causes the existing
bounds to diverge. This divergence arises from the infinite-dimensional nature of continuous-depth
models, which requires a fundamentally different analytical framework.

To address this issue, we leverage tools from theory of dynamical systems and graph limits to
develop a new framework for analyzing the transferability of GNDEs, ensuring that meaningful
bounds hold in the continuous-depth setting. We introduce Graphon Neural Differential Equations
(Graphon-NDEs) as continuous counterparts of GNDEs and derive rigorous results that capture the
complex trade-offs between discriminability and transferability. Our framework tackles the unique
challenges posed by the continuous-depth nature of GNDEs, such as handling infinite-dimensional
dynamics and maintaining stability over continuous evolutions—issues that are absent in discrete
GNNs. By overcoming these obstacles, our findings provide new insights into the scalability and
generalization of GNDEs, laying a theoretical foundation for the development of robust and flexible
graph-based neural differential equation models capable of adapting to complex and diverse graph
structures.

RELATED WORK

Graphons and their associated convergent graph sequences have been foundational in mathematics
Borgs et al. (2008; 2012); Lovász (2012) and have gained significant traction in machine learning
due to their ability to represent large-scale networks as limit objects.

In networked dynamical systems, graphons enable the transition from finite network models to their
infinite or continuum counterparts. By deriving limits of large network dynamics, researchers gain
insights into complex phenomena such as chimera states Abrams & Strogatz (2004); Kuramoto &
Battogtokh (2002), multistability Girnyk et al. (2012); Wiley et al. (2006), and synchronization.
However, rigorously justifying these limits and ensuring that continuum models accurately repre-
sent the dynamics of the original systems poses significant challenges, often requiring non-trivial,
problem-specific efforts and is a very active line of research in applied math Paul & Trélat (2022).

Building on recent advancements in deriving limits for nonlinear evolution equations on graphs
Medvedev (2014); Paul & Trélat (2022) and transferability in Graph Convolutional Networks
(GCNs) using the graphon framework Maskey et al. (2023), we present new transferability results for
Graph Convolutional Neural Differential Equations (GCNDEs). Specifically, we address both com-
plete weighted graphs sampled from a Lipschitz graphon Ruiz et al. (2020) and simple graphs gener-
ated from {0, 1}-valued graphons Ruiz et al. (2021a;b); Morency & Leus (2021). Using functional
calculus techniques inspired by Maskey et al. (2023) and generalizing them to the continuous-depth
setting through the introduction of new norms and stability theory of dynamical systems, we es-
tablish explicit convergence rates of O(1/n) for Lipschitz graphons and O(1/nc) for {0, 1}-valued
graphons, where c depends on the box-counting dimension of the boundary of the support.

To maintain simplicity while preserving the core ideas of our approach, we adopt a standard GCN
architecture. However, our framework is flexible and can naturally extend to GNDEs with Lipschitz
filters as introduced in Maskey et al. (2023). In future work, we plan to explore further generaliza-
tions, including random generative models, to broaden the applicability of our method.

2 NOTATION AND PRELIMINARY CONCEPTS

For a positive integer n, we let [n] := {1, 2, . . . , n} and Zn := {0, 1, . . . , n − 1}. We denote the
unit interval as I := [0, 1] and I2 := I × I . For an interval J ⊆ I , by |J | we denote the length of J ,
and we define the indicator function χJ : J → {0, 1} as

χJ(u) :=

{
1, if u ∈ J,

0, otherwise.

The function space Lp(I;R1×F ) consists of all Lp-integrable vector valued functions mapping I
to R1×F , where 1 ≤ p ≤ ∞ and F denotes the number of features. For a vector-valued function
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G = [Gf : f ∈ [F ]] ∈ L∞(I;R1×F ), we define the integral of G on I as
∫

I

G(u)du :=

[∫

I

Gf (u)du : f ∈ [F ]

]
.

We need a space for time-dependent functions. For Ω ⊂ [0,∞) and 1 ≤ p ≤ ∞, the space
C1(Ω;Lp(I;R1×F )) is composed of functions X : I × Ω → R1×F satisfying

1. For each t ∈ Ω, X(·, t) belongs to Lp(I;R1×F ).
2. For each u ∈ I , X(u, ·) is continuously differentiable.

We remark that u ∈ I and t ∈ Ω represents the spatial and time variables, respectively, in the
function X.

Consider an undirected, simple graph Gn = ⟨Vn(Gn), En(Gn)⟩, where Vn(Gn) is the set of nodes
with cardinality |Vn(Gn)| = n, and En(Gn) ⊆ Vn(Gn) × Vn(Gn) represents the set of edges. The
weight adjacency matrix is denoted as WGn

: En(Gn) → [0, 1], where [WGn
]ij = [WGn

]ji ̸= 0 if
(i, j) ∈ En(Gn). A graph feature matrix Xn ∈ Rn×F assigns a feature vector [Xn]i,: ∈ R1×F to
each node i ∈ Vn(Gn).

2.1 GRAPH NEURAL NETWORKS AND GRAPH NEURAL DIFFERENTIAL EQUATIONS

Graph Neural Networks (GNNs), introduced by Scarselli et al. (2008), are foundational tools for
learning from graph-structured data. Graph Neural Differential Equations (GNDEs) extend GNNs
to continuous-time systems, modeling the evolution of node features as

{
Ẋn(s) = FGn

(s;Xn(s); θ(s)),

Xn(0) = Gn,
(1)

where Xn(s) ∈ Rn×F represents the node features at time s with initial node feature matrix
Gn ∈ Rn×F , and FGn is a GNN parameterized by trainable functions θ(s). GNDEs address the
limitations of fixed-depth GNNs, enabling them to capture complex temporal and structural patterns,
particularly in dynamic graph scenarios.

A distinctive feature of GNDEs is that their parameters, θ(s), are graph-agnostic, allowing for po-
tential transferability across different graph structures. This raises a key question: Under what
conditions can GNDEs trained on one graph be effectively transferred to another? Addressing this
question is crucial for leveraging models trained on moderately-sized graphs to perform well on
larger, yet structurally similar, graphs, and therefore alleviating the computational challenging for
large scale graphs.

We focus on Graph Convolutional Neural Differential Equations (GCNDEs) as a specific instance
of GNDEs. Our aim is to establish a rigorous mathematical framework for understanding and im-
proving the transferability of these models. While we concentrate on this particular architecture, the
principles and techniques we develop are expected to extend to broader GNDE architectures, which
we leave for future research.

Graph Convolutional Networks (GCNs) and Graph Convolutional Neural Differential Equa-
tions (GCNDEs) One of the most prevalent GNN architectures is the GCNs, introduced by Bruna
et al. (2013) and popularized by Kipf & Welling (2016). GCNs excel at capturing local graph struc-
tures by extending traditional convolutions to graphs using spectral methods, effectively aggregating
information from neighboring nodes. This capability makes GCNs particularly successful in tasks
such as node classification and link prediction.

We adopt the formulation of GCNs using a graph shift operator (GSO) Sn, which generalizes prior
approaches by encompassing them as special cases Ruiz et al. (2020). A GSO Sn is a matrix that
encodes the graph structure, where [Sn]ij = [Sn]ji ̸= 0 if i = j or (i, j) ∈ En(Gn). Common
choices for Sn include the (weighted) adjacency matrix or the graph Laplacian. The graph convolu-
tion operation for a graph signal x ∈ Rn is defined by

h ∗Sn
x :=

K−1∑

k=0

hkS
k
nx = h(Sn)x,
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where h(x) :=
∑K−1

k=0 hkx
k, x ∈ R, is a polynomial determined by the filter h = [hk : k ∈ ZK ].

With the notation of graph convolutional operation, the output of ℓ-th layer of a GCN is given by

[Xn,ℓ]:,f := ρ

(
F∑

g=1

hfg
ℓ ∗Sn

[Xn,ℓ−1]:,g

)
, f ∈ [F ], ℓ ∈ [L], (2)

where Xn,0 := Gn ∈ Rn×F is the input feature matrix and ρ is a nonlinear activation function. The
output of this L-layer GCN can be compactly represented as

Xn,L := Φ(Sn;Xn,0;H), (3)

where the tensor Hf,g,ℓ,: := hfg
ℓ ∈ RK contains the trainable filter coefficients for all layers.

Graph Convolutional Neural Differential Equations (GCNDEs) further refine GNDEs by evolving
node features according to

{
Ẋn(s) = Φ(Sn;Xn(s);H(s)),

Xn(0) = Gn ∈ Rn×F ,
(4)

where the parameters in H(s) ∈ RF×F×L×K are independent of the graph size n. This indepen-
dence enables the model to be transferred to new graphs by only adjusting Sn once trained.

2.2 GRAPHON AS GRAPH LIMITS AND GRAPHON CONVOLUTIONAL NEURAL NETWORKS

Recent advances in the transferability of GCNs utilize graphons to model the continuous limit of
large graphs. To build on this, we first review the key theoretical concepts that form the foundation
of our approach.

A graphon is a bounded, symmetric, and measurable function W : I2 → I , serving as a continuous
generalization of an adjacency matrix. In this setting, nodes i and j are represented by points
ui, uj ∈ I , with the edge weight between them given by W(ui, uj).

To quantify the convergence of a graph sequence {Gn}, we use graph motifs F , which are arbitrary,
unweighted, and undirected graphs. A homomorphism from F = ⟨V (F), E(F)⟩ to a graph G =
⟨V (G), E(G)⟩ is a mapping ϕ : V (F) → V (G) that preserves adjacency, meaning (i, j) ∈ E(F)
implies (ϕ(i), ϕ(j)) ∈ E(G). The homomorphism density is defined as

t(F ,G) := hom(F ,G)
|V (G)||V (F)| ,

which measures the relative frequency of F appearing in G and quantifies structural similarity be-
tween graphs.

Homomorphisms from graphs to graphons are defined similarly to those between graphs. Let
t(F ,W) denote the density of homomorphisms from a graph F into a graphon W. We say that
a sequence of graphs {Gn} converges to the graphon W if, for all finite, unweighted, and undirected
graphs F ,

lim
n→∞

t(F ,Gn) = t(F ,W).

Every graphon is the limit object of some convergent graph sequence, and, conversely, every con-
vergent graph sequence converges to a unique graphon Lovász (2012). Thus, a graphon repre-
sents an entire class of graphs that, regardless of their size, belong to the same “graphon family.”
Graphons effectively capture the asymptotic behavior of dense graph sequences {Gn}, providing a
robust framework for analyzing large-scale networks. One can refer to more details in A.2.

Graphon Convolutional Neural Networks (Graphon-CNNs) Extending the concept of graph
convergence, a sequence of GNNs can converge to a graphon neural network, which is a limit
architecture defined by layers of graphon convolutions and nonlinear activations. In this framework,
the continuous analogue of graph convolution operators, known as graphon convolution operators,
is derived in Ruiz et al. (2020; 2021a). For a given graphon W : I2 → I , the graphon convolution
operator, denoted by TW, acting on a feature function x ∈ L2(I;R) is defined as

TWx(v) :=

∫ 1

0

W(u, v)x(u) du, v ∈ I.
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This integral operator is self-adjoint and Hilbert-Schmidt, with eigenvalues lying on [−1, 1] and
accumulating around zero. For a filter h = [h0, . . . , hK−1]

⊤, by introducing a polynomial h(x) :=∑K−1
k=0 hkx

k, x ∈ R, the graphon convolution is defined by

h ∗W x :=

K−1∑

k=0

hkT
k
Wx = h(TW)x,

where

T k
Wx(v) :=

∫ 1

0

W(u, v)(T k−1
W x)(u) du, v ∈ I, and T 0

W := I,

where I is the identity operator. Let X0 ∈ L∞(I;R1×F ) represent the input feature function. The
ℓ-th layer of a Graphon-CNN is given by:

[Xℓ]:,f = ρ

(
F∑

g=1

hfg
ℓ ∗W [Xℓ−1]:,g

)
, f ∈ [F ], ℓ ∈ [L], (5)

where ρ denotes a nonlinear activation function. The output is represented as:
XL := Φ(W;X0;H),

where H contains the trainable filter parameters as those in 3.

3 GRAPHON CONVOLUTIONAL NEURAL DIFFERENTIAL EQUATIONS

Building on the transition from GCNs to Graphon Convolutional Neural Networks, we extend the
concept of GCNDEs to the continuous domain by introducing Graphon Convolutional Neural Dif-
ferential Equations (Graphon-CNDEs). The system is defined by

∂

∂t
X(u, t) = Φ(W;X(u, t);H(t)),

X(u, 0) = G(u) ∈ L∞(I;R1×F ),

(6)

where Φ denotes the graphon convolutional operator parameterized by

H(t) =
{
[hfg

ℓ ]k(t) : f, g ∈ [F ], ℓ ∈ [L], k ∈ ZK

}
,

and W represents the graphon characterizing the continuous structure of the underlying graph se-
quence. The initial graphon feature function G specifies the node features at time t = 0. For each
t > 0, by hfg

ℓ,t we denote the polynomial determined by the filter hfg
ℓ (t), for all f, g ∈ [F ] and

ℓ ∈ [L], that is

hfg
ℓ,t(x) :=

K−1∑

k=0

(
[hfg

ℓ ]k(t)
)
xk, x ∈ R. (7)

To ensure the validity of our newly introduced Graphon-CNDEs, it is crucial to establish their well-
posedness. This guarantees the existence, uniqueness, and continuous dependence of solutions on
the initial conditions. Notably, we achieve this under mild assumptions that require only measure-
theoretic properties of the graphons, without imposing any topological regularity conditions. This
flexibility allows our results to be applicable in very general spaces including generalizations to
atom-free standard probability space.

• AS0. The convolutional filters are A0-Lipschitz continuous about t, namely, for each f, g ∈
[F ], ℓ ∈ [L], k ∈ ZK , there holds

∣∣∣[hfg
ℓ ]k(t1)− [hfg

ℓ ]k(t2)
∣∣∣ ≤ A0|t1 − t2|, for all t1, t2 ∈

R.
• AS1. The activation function ρ is normalized Lipschitz, that is, |ρ(x) − ρ(y)| ≤ |x − y|,
x, y ∈ R and ρ(0) = 0.

Theorem 3.1 (Well-posedness, proof in Section A.4). Suppose that AS0 and AS1 hold. If W ∈
L∞(I2;R) and G ∈ L∞(I;R1×F ), then for any T > 0, there exists a unique solution of IVP 6,
such that X ∈ C1([0, T ];L∞(I;R1×F )).

5



Under review as a conference paper at ICLR 2024

3.1 GRAPHON-CNDES AS DETERMINISTIC GENERATIVE MODELS FOR GCNDES

By comparing the GCDE 4 and the Graphon-CNDE 6, we observe that both can share the same
set of parameters H. For graphs derived from a common graphon family, this implies that GCDEs
can be viewed as specific instances of Graphon-CNDEs. Consequently, Graphon-CNDEs serve as
deterministic generative models for GCNDEs, offering insights into the structural properties of these
networks.

We focus on two deterministic families of discrete convergent (as detailed in SubSection 2.2) graph
models, Model I for complete weighted graphs and Model II for simple unweighted graphs, con-
structed from a graphon W. Although deterministic, these models provide a foundation for under-
standing more complex random graph models and their behavior in machine learning tasks such as
node classification, link prediction, and graph signal processing.

We split the unit interval I into n subintervals by setting ui := i−1
n and I

(n)
i := [ui, ui+1) for

i ∈ [n]. In the following, we introduce different ways to model a sequence of graphs {Gn}n∈N with
node features generated from the graphon W and a graphon feature function G ∈ L2(I;R1×F ).

Model I (Complete Graphs with weighted adjacent matrix) Suppose that W is a graphon and
G is a graphon feature function. For each n ∈ N, a complete graph Gn on n nodes is defined by

Gn := ⟨[n], [n]× [n]⟩,

where we construct the weighted adjacency matrix WGn
∈ Rn×n by direct sampling on the graphon

W over the mesh grid as

[WGn
]ij := W(ui, uj), i, j ∈ [n]. (8)

This model is particularly useful in scenarios where a fully connected network structure is required,
such as in dense communication networks or certain types of recommendation systems, where un-
derstanding interactions between all nodes is crucial.

Consistently, the corresponding node feature matrix Gn ∈ Rn×n on Gn is generated by sampling
on the graphon feature function G as

[Gn]i,: := G(ui), i ∈ [n]. (9)

Model II (Simple Graphs with binary adjacent matrix) Suppose that W : I2 → {0, 1} is a
graphon for simple graphs having binary weights and G is a graphon feature function. We denote
by W+ the support set of W, that is W+ := {(u, v) : W(u, v) = 1}. For each n ∈ N, we construct
a simple graph Gn as

Gn := ⟨[n], E(Gn)⟩,

where the edge set E(Gn) is defined by

E(Gn) := {(i, j) ∈ [n]× [n] : (I
(n)
i × I

(n)
j ) ∩ W+ ̸= ∅},

and the adjacent matrix WGn
is defined by

[WGn
]ij :=

{
1, if (i, j) ∈ E(Gn),

0, otherwise.
(10)

We remark that here [WGn ]ij represents the binary connectivity between nodes i and j of the graph
Gn. This model is well-suited for generating network structures with binary relations, which are
prevalent in social networks, citation graphs, and biological networks. The corresponding node
feature matrix Gn for graph Gn is defined, with the help of graphon feature function G, by

[Gn]i,: :=
1

|I(n)i |

∫

I
(n)
i

G(u) du, i ∈ [n]. (11)
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3.2 PROBLEM FORMULATION

Given a graph Gn constructed under either model I or II, we define GSO as Sn = 1
nWGn

, where
the scaling factor 1

n is necessary for convergence. Then the corresponding graph neural differential
equation is formulated as

∂

∂t
Xn(t) = Φ(Sn;Xn(t);H(t)),

Xn(0) = Gn

(12)

where Gn is the corresponding discrete node features of G over Gn(cf.9 or 11).

As n increases, both the matrix WGn
and the initial condition Gn converge to the graphon W and

the continuous initial condition G, respectively. Consequently, we expect the solution Xn of the
discrete model in 12 to converge towards the solution X of the continuum model in 6. The primary
research questions we address are as follows:

(A) Accuracy of Continuum Approximation: Does the continuum model 6 provide an accu-
rate approximation of the dynamics of the discrete model 12 for large finite n? If so, what
is the precise sense in which the solutions of the integro-differential equation approximate
those of the discrete model?

(B) Applicability Across Network Topologies: To what extent is the continuum limit appli-
cable across various network topologies? Can it be generalized beyond specific structures
like k-nearest-neighbor graphs on a ring, extending to more complex and realistic networks
such as small-world or scale-free graphs?

Direct comparison between the continuous output X(·, t), defined over the interval I , and the discrete
output Xn(t), defined over the index set [n], is challenging. To bridge this gap, we introduce a
Graphon-NDE induced by a GNDE.

For n ∈ N, with a discrete adjacency matrix WGn
, and a discrete node feature matrix Gn being

given, we define a graphon Wn : I2 → R (corresponding to WGn ) by

Wn(u, v) :=
∑

i,j∈[n]

[WGn
]ijχI

(n)
i

(u)χ
I
(n)
j

(v), u, v ∈ I, (13)

and a graphon feature function Gn : I → R (corresponding to Gn) by

Gn(u) :=
∑

i∈[n]

[Gn]i,:χI
(n)
i

(u), u ∈ I. (14)

Then the induced Graphon-NDE is formulated as

∂

∂t
Xn(u, t) = Φ(Wn;Xn(u, t);H(t)),

Xn(u, 0) = Gn(u),
(15)

where Φ(Wn;Xn(u, t);H(t)) denotes the graphon convolutional neural network parameterized by
H(t) over the induced graphon Wn, and Gn is the graphon representation of initial node feature
matrix Gn. This construction embeds the dynamics of the discrete graph domain 12 “equivalently”
into the continuous graphon domain 15, and enables a systematic comparison between GNDEs and
their continuous counterparts, facilitating the analysis of their convergence and scalability.

We proceed to consider the quality of approximation of the solution of 15 to the solution of 6 as
n → ∞, for both Models I and II. We list some mild assumptions, partially used for Models I and
II, on convolutional filters H, graphon W and initial graphon feature function G.

• AS2. For each t ≥ 0, f, g ∈ [F ] and ℓ ∈ [L], the function hfg
ℓ,t is Lipschitz continuous with

Lipschitz constant Lip(hfg
ℓ,t(·)).

• AS3. The graphon W is A1-Lipschitz, that is, |W(u2, v2)− W(u1, v1)| ≤ A1(|u2 − u1|+
|v2 − v1|), for all v1, v2, u1, u2 ∈ I .

7
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• AS4. The initial graphon feature function G = [Gf : f ∈ [F ]] ∈ L∞(I;R1×F ) is A2-
Lipschitz, that is, for each f ∈ [K], |Gf (u2)−Gf (u1)| ≤ A2|u2 − u1|, for all u1, u2 ∈ I .

Below, we present the linear convergence rate of solutions for Model I.
Theorem 3.2 (proof in A.6). Suppose that AS0-AS4 hold. Let Wn and Gn be defined by 13 and 14
with coefficients 8 and 9, respectively. Let X and Xn denote the solutions of 6 and 15, respectively.
Then it holds that

∥X − Xn∥C([0,T ];L2(I;R1×F )) ≤
C

n
, (16)

where C is constant independent of n and only depends on H, G, W, A1, A2 and T with explicit
formula provided in 56.

The proof of Theorem 3.2 requires only Lipschitz continuity on filters, unlike the highly regular
filters in Ruiz et al. (2020); Keriven et al. (2020), and improves the convergence rate from O(1/

√
n)

in Ruiz et al. (2020) to O(1/n). This result also extends Theorem 5.4 of Maskey et al. (2023) to
GNDEs with a continuous-depth setting.

We mention that the graphons for simple graphs are discontinuous, so in general, AS1 is not satisfied
for Model II. We tackle this problem by employing the concept of upper box-counting dimension to
characterize the complexity of the boundary of W+.
Theorem 3.3 (proof in A.6). Suppose that AS0-AS2 and AS4 hold. Let W : I2 → {0, 1} be a
graphon for simple graphs with b := dimB(∂W+) ∈ [1, 2). Let Wn and Gn be defined by 13
and 14 with coefficients 10 and 11, respectively. Let X and Xn denote the solutions of 6 and 15,
respectively. Then for any ϵ > 0, there exists a positive integer NW (depending on W) such that
when n > NW, it holds that

∥X − Xn∥C([0,T ];L2(I;R1×F )) ≤
C̃

n1− b+ϵ
2

, (17)

where C̃ is a constant independent of n, and only depends on H, G, W, A2 and T with explicit
formula provided in 64.

Theorem 3.3 deals with irregular graphons that are merely measurable, offering convergence rates
not presented in prior work Ruiz et al. (2021b;a); Morency & Leus (2021); Maskey et al. (2023).

In summary, Theorems 3.2 and 3.3 address problem (A) in Section 3.2 by providing explicit ap-
proximation bounds within the relevant function space, and tackle problem (B) by imposing purely
measure-theoretic or mild regularity assumptions, thereby covering a broad family of graphs. As
a byproduct, one can derive transferability bounds for GNDEs from our main theorems using the
triangle inequality: for graphs of sizes n1 and n2 sampled as in Model I, the bound is O( 1

n1
+ 1

n2
),

and for Model II, O( 1
nc
1
+ 1

nc
2
) (where c := 1− b+ϵ

2 as in 17). Notably, for Model I, existing bounds

for discrete GCNs with L̃ layers behave as O(
CL̃

n ), with CL̃ → ∞ as L̃ → ∞, highlighting the need
for a new analytic framework for GCNDEs, even though they can be viewed as continuous limits of
residual GCNs.

4 NUMERICAL RESULTS

In the following sections, we illustrate the GNDEs transferability results via several examples with
additional set-up and computation details provided in Appendix A.1

Transfer Learning of Nonlinear Heat Equations on Complete Weighted Graphs We investi-
gate the transferability of GNDEs in modeling nonlinear heat equation dynamics Medvedev (2014)
across graphs of varying sizes. We train GNDE models on graphs Gn of different sizes, with
n ∈ {20, 40, 60, 80, 100} nodes, all sampled from the same underlying graphon. The learned pa-
rameters are transferred to predict the same type of dynamics on a larger graph with N = 500 nodes.
The GNDE, parameterized by a GCN (L = 2,K = 2, F = 1) is trained using an MSE loss function
and optimized with ADAM (lr = 0.001, β1 = 0.9, β2 = 0.999) based on a single training trajectory
of the nonlinear heat equation defined over Gn (see equation 18).
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We evaluate transferability by measuring the test ℓ2 error between the true dynamics YN (1) and
the GNDE-predicted dynamics XN,n(1) on GN , where the parameters were learned on Gn. The
relative error ∥YN (1)−XN,n(1)∥2

∥YN (1)∥2
is shown in Figure 3 (a). The errors are small, on the order of

O(10−2), and exhibit a general decay with increasing graph sizes. The fluctuations in error can
be attributed to training challenges for larger number of nodes, but given the two-digit accuracy of
the theoretical bound (O(1/500)), these variations are expected. These findings demonstrate that
GNDEs can learn complex physical dynamics on smaller graphs (even with n = 20) and effectively
transfer this knowledge to larger systems (N = 500, see Figure 2), enabling scalable modeling of
physical processes on graphs.

n = 20

True Predicted

N = 500

True Predicted

Figure 2: Top: Initial conditions for the nonlinear heat equation with n = 20 and N = 500 nodes,
respectively. Bottom: True and trained GNDE prediction comparison of heat distribution at t = 1
for the given graph. Bottom left model is transferred to bottom right to make N = 500 prediction.

Figure 3: Left: GNDE relative prediction errors for nonlinear heat equations on a complete graph
with 500 nodes. Right: Log-log convergence plot for transferability bounds of Checkerboard
graphons.

Transferability of GCNDEs on {0, 1}-valued Checkerboard Graphons with Varying Checker-
board Sizes Theorem 3.3 demonstrates that the convergence rate of GNDEs is influenced by the
box-counting dimension of the boundary of the {0, 1}-valued graphon support. While this upper
bound provides valuable insights, it may not be optimal, and the necessity of this condition remains
an open question. To empirically investigate, we study convergence rates on subgraphs derived from
checkerboard graphons, where increasing checkerboard sizes correspond to higher box-counting di-
mensions. We generate diverse, smooth initial feature vectors using random Fourier series. For each
checkerboard size, experiments are conducted on subgraphs with varying node counts, generated

9
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via Model II, ensuring consistent GDE parameter transfer from the original graph. The relative ℓ2

norm error between the GNDE outputs on the original and subgraphs is computed, and results are
averaged over multiple trials to account for variability in initial conditions. At t = 0, the expected
convergence rate of initial conditions sampled from subgraphs is O(1/n). As shown in the log-
log convergence plots for the solution discrepancy at t = 1 ((see Figure 3 (b))), the error decay
rate decreases with increasing box-counting dimensions, supporting our theoretical predictions and
highlighting the influence of structural complexity on transferability.

Transferability of GCNDEs on the Cora Citation Network We explore the transferability of
GNDEs in node classification tasks. The Cora citation network is a benchmark dataset of 2708
scientific publications each described by 1433 features. Publications are classified into 7 categories.
We use the standard data split Kipf & Welling (2016) with 140 training, 500 validation, and 1000
testing nodes. We train GNDE models on random subgraphs of various sizes. We consider subgraphs
with 10 − 50% of the original nodes. For each subgraph, we create a corresponding model which
consists of a linear head mapping to an input dimension of 16, a GNDE parameterized by a GCN
(L = 2,K = 2, F = 16), and a linear readout layer mapping to the 7 class labels for the final
classification task. We train with cross-entropy loss using ADAM optimization (lr = 0.001, β1 =
0.9, β2 = 0.999) on the subgraph. Training takes place over 1000 epochs. To avoid overfitting,
representative models were selected as the lowest validation loss model after an initial convergence
period of 200 epochs. Transfer then occurs to the full graph and test set accuracy for the full dataset
is recorded. Ten random subgraphs were tested for each proportion of nodes, and the average results
are reported in Table 1. As we train on a larger proportion of nodes, we gain accuracy on full graph
prediction.

Table 1: Cora Average Test Accuracies

Nodes in Subgraph 10% 20% 30% 40% 50%

Subgraph Accuracy 25.0± 5.7 31.3± 5.4 30.5± 4.6 31.5± 3.4 33.8± 3.3
Full Graph Accuracy 26.5± 7.4 29.1± 6.0 30.0± 4.5 31.5± 3.1 34.0± 2.3

CONCLUSION AND FUTURE WORK

Transferability involves defining models that generate graphs and establishing metrics to measure
discrepancies when a fixed GNN is applied to graphs of different sizes, which can be viewed as a
notion of generalization. We introduced Graphon-NDEs as a novel framework integrating dynam-
ical systems theory with the study of transferability in GNNs to analyze transferability of GNDEs.
Our approach bridges these fields, enabling Graphon-NDEs to serve as generative models for GN-
DEs while providing theoretical guarantees on approximation accuracy. The framework can also
incorporate other approaches analyzing the transferability of GCNs, such as the stability method
Gama et al. (2020); Kenlay et al. (2021a;b) and sampling techniques Keriven et al. (2020); Levie
et al. (2021), each offering unique perspectives. While we focused on deterministic graphs, this
work lays the foundation for future research on stochastic graphs and more complex network struc-
tures, enhancing the robustness and generalization of GNDEs across diverse settings. We believe
our framework provides a promising starting point for future work integrating dynamical systems
and machine learning.

REPRODUCIBILITY STATEMENT

Reproducible code for all experiments will be fully open-sourced upon acceptance.
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